Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1377020150120030172
Tissue Engineering and Regenerative Medicine
2015 Volume.12 No. 3 p.172 ~ p.180
Three dimensional plotted extracellular matrix scaffolds using a rapid prototyping for tissue engineering application
Song Bo-Ram

Yang Soon-Sim
Jin He
Lee Su-Hee
Park Do-Young
Lee Jun-Hee
Park So-Ra
Park Sang-Hyug
Min Byoung-Hyun
Abstract
Naturally derived biomaterials are rarely used in advanced rapid prototyping technology despite their superior biocompatibility. The main problem of natural material plotting is the high sensitivity of materials concentration and viscosity on the plotting nozzle. The aim of the current study was to develop a three dimensional (3D) plotting system capable of dispensing extracellular matrix (ECM)-c (ECM powder blended collagen) and manufacture various shapes of ECM-c scaffolds to apply for irregular defects. We had adapted a powder-based plotting approach to print the stable 3D construct using only cartilage derived ECM materials. This study successfully developed the plotting method for high viscous ECM-c material and showed the 3D plotted scaffolds with high interconnected pores as well as complex shape. Furthermore, cell culture results proved that plotted ECM-c scaffolds were able to provide a suitable environment for cell attachment, proliferation and chondrogenesis. This study shows the 3D printing feasibility of ECM natural material has demonstrated as a first time. We believe our results will offer a meaningful step toward the 3D scaffold printing based on natural ECM materials for future organ printing.
KEYWORD
Cartilage extracellular matrix, Rapid prototyping, Three dimensional scaffold, Engineered cartilage
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø